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On the Theory of Randomly Misaligned
Beam Waveguides

FELIX K. SCHWERING, MEMBER, IEEE

Abstract—A straightforward method for the determination of the
expected attenuation in misaligned beam waveguides is presented. It
applies to confocal guides and assumes that the misalignment consists of
random displacements of the lenses in directions perpendicular to the beam
axis.,

Reiterative fields, as they are present in perfectly aligned beam wave-
guides, do not exist in misaligned guides. However, it can be shown that
there are beams whose expected field distribution is repeated from lens to
lens. These ““statistical modes’’ are determined by the eigenfunctions of a
homogeneous integral equation of the second kind. The corresponding
cigenvalues determine the expected attenuation per iteration. The abso-
lute squares of the eigenvalues yield an upper bound for the expected
power loss per iteration.

The integral equation is solved for small mean square displacements
of the lenses by a perturbation method. For infiitely extended lenses, the
equation can be solved in closed form. In both cases the expected attenu-
ation of the lower-order statistical modes has been calculated; the results
are shown as function of the mean square displacement of the lenses.

INTRODUCTION

HE MODE THEORY of beam waveguides [1]-[3]
Tis derived with the assumption that the guiding struc-

ture is strictly periodic. Apart from other conditions,
this requires that the phase transforming lenses be per-
fectly aligned on the waveguide axis. A transmitted field can
then be described by a system of reiterative wavebeams
(so-called beam modes) whose cross-sectional field distribu-
tion is repeated with the spacing of the lenses. With every
iteration, the beam modes are multiplied by a complex am-
plitude factor determining the attenuation and phase shift per
iteration. The purpose of this paper is to establish the effects
of random misalignments of the lenses on the field distribu-
tion and the attenuation. The study is limited to so-called
confocal guides where the spacing of the lenses is twice their
focal length. Furthermore, the assumption is made that the
lenses are displaced only in a direction perpendicular to the
waveguide axis. Displacements in the direction of the wave-
guide axis and tilting of the lenses leads to smaller-order
effects and will, therefore, not be considered here.! The lateral
displacement of each lens is assumed to have a Gaussian
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1 According to Steier [8] the effects of random lens displacements in
the axial direction are coupled to those of the lateral lens displacements
and, if the number of lenses of the guide is extremely large, the coupled
effects can greatly influence the transmission properties of the beam
waveguide. In practical cases, however, as, for example, in the case of
a confocal guide with less than 10¢ lenses and with a relative standard
displacement of the lenses in the axial direction Sa=Ad/d=1073, the
axial lens displacements will influence a transmitted wave beam only
insignificantly.

probability distribution, with a standard displacement which
is the same for all the lenses.

We will show that in this type of misaligned guiding
structure modes exist that are reiterative in the statistical
sense; this means the cross-sectional distribution of the ex-
pected fields is repeated from lens to lens. Similar to the
case of perfect alignment, the statistical modes are deter-
mined by the eigenfunctions of a homogeneous integral equa-
tion of the second kind. The eigenvalues of this integral
equation determine the expected attenuation between two
successive lenses.

Misaligned beam waveguides have been treated in the
literature from two points of view. A number of papers [4]-
[8] deal with the path of the beam axis and the variation of
the beam diameter in a misaligned beam waveguide, but do
not include the effect of misalignment on attenuation and
transmission loss. Eaglesfield [9] was the first to investigate
the expected loss of the dominant mode in a misaligned
waveguide. He expands any transmitted wavebeam into the
mode functions of the corresponding aligned guide with
infinite apertures; the misalignment of the lenses then leads
to an interaction between the different mode functions so
that a wavebeam passing through a misaligned guide is
described by a spectrum of modes which in general changes
from lens section to lens section. Eaglesfield assumes that,
after the wavebeam has passed a large number of lenses, a
quadratic steady state will be reached, i.e., a steady state
characterized by an expected power spectrum of the modes
that does not change any longer apart from a factor common
to all modes that determines the expected power loss per
iteration. This expected power loss has been calculated
approximately for the dominant mode, assuming small mean
square displacements of the lenses. Gloge [10] has studied
wavebeam resonators with tilted mirrors, and from his anal-
ysis derives the field distribution and attenuation in system-
atically misaligned beam waveguides, such as periodically
misaligned or continuously curved waveguides. He also
treats randomly misaligned waveguides. The approximation
used in this case, however, considers only the loss caused by
a conversion of a mode, incident on a displaced lens, into a
mode spectrum, but neglects the partial reconversion of this
spectrum into the initial mode by the following displaced
lenses.

The integral equation derived in this paper formulates
(within the framework of the Fresnel-Kirchhoff theory) the
misalignment problem rigorously, and yields the field dis-
tribution of the expected mode functions and the expected
amplitude attenuation per iteration, though not the expected
power loss. In the limiting case of infinitely extended lenses
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the integral equation can be solved in closed form: the eigen-
functions are Gauss-Hermite functions, whose (in general
complex) arguments depend on the mean square displace-
ment of the lenses and whose eigenvalues are algebraic func-
tions of this quantity.

STATEMENT AND MATHEMATICAL FORMULATION
OF THE PROBLEM

Consider a beam waveguide of equally spaced identical
lenses whose focal length is half the lens spacing (see Fig. 1).
The axis of the waveguide coincides with the z-axis of a
cartesian coordinate system x, y, z. The apertures of the
lenses are assumed to be rectangular in shape with the
dimensions 2a and 2b in the x-and y-directions. The lens
centers are displaced from their proper position on the wave-
guide axis in a direction perpendicular to this axis. The x-
and y-components of the displacements are denoted by s,
and t,, respectively. The phase transformation of the »th
lens is then given by

k
exp {= o+ 1o = 8+ 4 - W]} )

where ¢, is the phase retardation in the lens axisand k the
wavenumber. The transformation takes place within the
range —a+5,<x< +a+s,, —b+1t,<y<4-b++1, outside this
range the field is assumed to be absorbed by an opaque
screen. We assume that the displacements s,, ¢, have a Gaus-
sian probability distribution

6—1/2(@,./3)2
’U)(Sy) = ———
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where the mean square displacement § is the same for every
» and for both cross-sectional directions. The sequence of

k
E(,, y,, 2) exp { o+ ] [z — )2+ ( — ty)Z]}

(2, 40, 2) = 0
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Fig. 1.

A section of a misaligned beam
waveguide with rectangular lenses.

lenses forming the guide is then a structure periodic in the
statistical sense.

If the distribution of the tangential electric or magnetic
field components of a time harmonic wavebeam is known in
the plane of the first lens z=2z; the field in any plane z>z;
can be determined. Assuming at first deterministic dis-
placements s,, ¢, the field in the plane z=constant will de-
pend on the displacements of the lenses through which the
beam has passed before reaching this plane. Since the dis-
placements are at random, one can define an “expected
beam” which is determined by the average of all the possible
field distributions.

If any given beam has passed a large number of randomly
misaligned lenses, it is reasonable to assume that the expected
beam becomes independent of the number of preceding
lenses. If this is the case, the expected beam before and after
each iteration should be the same, apart from a decrease in
amplitude that may be characterized by an “expected” atten-
uation factor.

We denote the x- or y-component of any one of the possible
field distributions in front of the »th lens by E(x,, ¥», 2.).
This distribution depends, of course, on the displacements
of the preceding lenses. The field E’ behind the lens is then

inside (—a+s, <z<+a-s
{ 3)

b+t <y<+b+t
From this distribution the field in front of the (v+1)st lens
is derived with the help of Green’s function for the plane

screen. Using the well-known Fresnel-Kirchhoff approxima-
tion of this function we obtain

outside

ik tatsy bty k
E(@op1, Yor1y 2r1) = 2— _d— e_jkdf f E' (@), Ysy %) €xp {_.7 5{; [(%4-1 — %)% + o1 — y,,)2]} dy,dz,
¥

—atsy —b+iy

j k +atsy +botty
E(xv-rh Yoty zl’+1) == e f f
27 d —~a+8p ~b+tr

k k
exD {J‘ [ = 507 = 0] = [ = 20 4 (s = W]} s

— o < Lyt1y Yoy < + . (4)

Inserting (3) into (4) yields the following relation between
the fields at the input planes of two successive lenses

B2, y», 2)

2d ®
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Iterating (5) one can express the field at the (n+1)th lens
by the field at the first lens

j kE\" +atsn +ottn +a+ts1 +bth
E(@ns1, Yty 2np1) = <— _) g inkdtyo) f f T f f E(x1, y1, 21)
2z d —atey, bty —ater Y bty

n

k2 k
-eXp {.7 _d' Z [(xv -8+ (yr — tV)2]} exp {-]é;l' ;1 [(x,+1 - )% + (yH—l - yv)Z]}

v=1

~dydzy - v - dyuda,.

The field at the input plane of the (n4-1)th lens depends on
the displacements of all the lenses up to the nth lens. The
expected field at the (n-}-1)th lens is given by

+o +o
E<xn+1, Ynt1y zn+1) =f o E(xn—Hy Yat1, Zn+1)UJ(S1)’w<t1) et w(sn)w(tn)dtldsl e dbads,
where the w’s are the probability distribution functions, (2).
We now ask the question, is there an incident beam whose
expected field distribution at lens n+41 is (apart from an
amplitude factor p) the same as the actual distribution at
lens 1, or in mathematical formulation, can the equation

E(.’L‘, Y, 2n+1) = pE(CU, Y, zl) — o < z, Y < 4w

be satisfied? With (6) and (7), (8) leads to a homogeneous
integral equation of the second kind for the initial field dis-

tribution E(x, y, zy) at the input plane of the first lens?
+oo +o0 +atsn +bttn +a+s1 +btt1
PE(@ni1, Yny, 21) =f ct f f f Tt f f E(z1, y1, 21)
' Tp=—a-+8y ¥ Yp=—b+%, Ty=—a+sy ¥ y1=—b+t

Spatp e e8y f=—c0

n

. II K@op1, T} Yoi1, Ys; S, b)dyrdy - - - dypdzadiyds, - - - dtuds,

=1
with
. . N k
K(xv+17 Ly Yot1y Yo Suy tv) =17 4252 e “exp {J E‘ [(x” - S”)2 + (yv - tv) 2]
‘ 1 82412
—_—7 — — 2 - == ——
J 24 [@or1 — @) + (Wor1 — 9 ] 9 52 } :

We interchange the order of integration in that we form pairs
of integrals over s,, x, and over t,, y,. We then introduce the

transformation
+o0 +atsy +oo +atz,
f f e dxvdsv = f f A dSydxy
Zy=—00 sy=—a-t+zyp

Sy=—w0 ¥ gy=—atsy

and an analogous transformation for the integration over
Y» t. This transformation is evident from Fig. 2 where the
range of integration is shown in an Xx,, s,-plane.

Thus the integral equation (9) can be written

+o0 +o0
DB, iy ) = [ : f B, ys, 22)

T Up=—0 Z1: Y1y =—%

L B@osr, 20 vors, 403 9) - dyadas - - - dygda,

y=1

? On the left-hand side of (9) x and y have been replaced by x,
and yn,1 as the x- and y-coordinates which remain after performing the
integrations on the right-hand side have these subscripts.

(6)

(")

(8)

(9)

(10)

(11)

(12)
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| Sy

~-a

Fig. 2. Geometrical illustration of (11):
range of integration in the x,, s,-plane.

where

K(@yt1y 005 Yoy Yo 3)

+atxy +btyy
= f f K (o1, T0} Yoi1, Yo; vy B)dbs,. (13)
sy=—a+2y ¥V ty=—b+tyy
The kernel of integral equation (12)
w0 o n -
f ’ f H K<xv+1: Tos Yrt1, Yo, 5)
Ty 1Yy =—00 zg9,yg=—00 »=1

'dyzdxz LR dy,,d;vn (14)

is the (n—1) times iterated kernel K. To solve this equation,
therefore, we need only to find the system of eigensolutions
of the simpler equation with the noniterated kernel®

VPE (2, Y2, 21)

+o0 +o0
= f E(z1, y1, 20K (s, €15 Yo, Y1; 5)dyidas

— —%

— o L@y, Yy X+ o, (15)

This means physically, if the expected field distribution of a
wavebeam at the (n+1)th lens is equal to the initial field
distribution at the first lens, then also the expected field dis-
tributions at the second lens, at the third lens etc., are equal
to the initial distribution and the wavebeam is reiterative
in the statistical sense with the spacing of the lenses. Wave-
beams of this property, therefore, will be called the modes
of the randomly misaligned waveguide. The expected dis-
tribution of these statistical mode functions at the lens planes
is determined obviously by the eigenfunctions of the kernel
K and the expected attenuation factors per iteration are de-
termined by the corresponding eigenvalues. Introducing nor-
malized variables

3 The eigenvalue p=0 which would not permit this statement will
not occur for physical reasons.
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& — z, Y
a, B = 1/ka,b (16)
o, T d L, ¢
and substituting
k
P&n) = Gz esn i 0+ 99|
_ . T
g = ¥pexp [,7 <t//u + kd — —{;)]
T'(&s, £15 12, m1)
= K{xs, &1 Y2, Y1, 5) exp [j <¢o + kd — %)]
k
“exp [Jzé e — 00?4 (v — yx)%} (17)
integral equation (15) becomes
qF (&2, m2)
+o0 00
= f F(&1, n) T (&2, £1; n2y n)dmdés
— 0 <y X+ o (18)
The kernel T is obtained with (10), (13), and (17)
T (&, &5 12, m)
= ———exp [j(251 + nm)]
T~
+at £1 +B+m
: f exp [—2j(k101 + mr)]
or=—otE1 Y Ti=B+m
1
*exXp I:— (‘* - ]> (0’12 + T12):|d7'1d0’1
202
= s explji(Ets + nm)]
o 2
-exp |:—2 <r——> (&2 + 7]12)]
-
Jfb <Z€é + 51/_‘)’) _ cI><—’)(06 + 51/’Y>}
1 V20 NGZ
_ {q) <’Yﬂ +:71/7> _ q)('“’Y»B 't 771/_‘1[)} (19)
/20 26

where & is the error integral
2 u .
d(u) = ——:f evdy and vy = (1 — 2jo)"? (20)
Vs

o=~/(k/d)s is the normalized mean square displacement
of the lenses. Since the kernel T is not Hermitian, we do not
have a mathematical theorem to prove the existence of eigen-
solutions of (18). To be able to proceed we shall assume,
however, in the following that this equation has indeed solu-
tions. In particular, if the mean square displacement is small,
the eigenfunctions will not deviate essentially from the char-
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acteristic functions for ¢=0, i.e., from the mode functions
of the perfectly aligned guide which even form a complete
system.

THE ORTHOGONALITY RELATION OF THE STATISTICAL
MobE FUNCTIONS

The eigenfunctions of (18) which, in general, are complex
satisfy the orthogonality relation

0 Eae]
f Fou(t, )P, )W n)dnd

o
IR

F, and F,, are any two eigenfunctions; if they are properly
normalized the constant 4,, is unity.

In contrast to the mode functions for the aligned guide the
orthogonality relation for the statistical mode functions
requires a weight function

W, n) = ;117 exp [—2 (—'—’—)2(52 + nﬂ
() ()
() - ()

The orthogonality relation (21) follows from the fact that
with the substitution

EF(g,n) = FE 0vW(E, n) (23)

(18) transforms into an integral equation with the symmetric
kernel

p=m

u # m. @y

. (22)

. I

T(&, £1; 12, m) = o eIttt/ (&, n2) W (E1, m).  (24)
™

But the eigenfunctions of a symmetric kernel are orthogonal

to one another with the weight function 1.

EXPECTED ATTENUATION AND EXPECTED POWER Loss
OF THE STATISTICAL MODE FUNCTIONS

Consider the transmission system shown in Fig. 3. A
transmitter excites in the input plane of the first lens the
initial field distribution of a statistically reiterative wave-
beam. The wavebeam is then passed through a sequence of
n (misaligned) lenses, and is received by a calibrated receiver,
placed at a distance d behind the nth lens [i.e., at the input
plane of the (n+1)th lens]. The voltage V,,;, measured by
the receiver, is compared to the reference voltage V3 which
is measured by the same receiver when placed immediately
at the input plane of the first lens.

The expected value of the voltage ratio V,.1/ V1 obviously
is the expected amplitude attenuation factor of the wave-
beam over the path length of the sequence of # lenses and
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Misaligned beam waveguide with transmitter and receiver.

Fig. 3.

the expected value of the absolute square voltage ratio
Vg1 Var®/ViV1* is the expected power attenuation factor
over the same path length.

The voltage measured by the receiver is

y = fs [ vt itz manae (5)

where U(%, 1) is the distribution of any given incident field in
the aperture plane S of the receiver and y(£, ) is a charac-
teristic function of the receiver. Since we consider a statisti-
cal beam mode, whose actual field distribution in the input
plane of the first lens is given by an eigenfunction of integral
equation (18), Ui(¢, n)=F(%, »), and whose expected field
distribution in the input plane of the (n+1)th lens is given
by the same function, U,4i(£, 1)=¢"F(%, ), where q is the
corresponding eigenvalue, we obtain with (25):

Von=aVi=a [ [ Fenuenis  @0)
S

The expected voltage ratio V,.,1/ V1, therefore, is equal to g
and the eigenvalue g is the expected amplitude attenuation
factor per iteration.

According to a well-known theorem of probability theory,
the expected value of the absolute square voltage ¥, 1+ V,i*
can be written

Vn+1Vn+1* - n+1 Vn+1 + AVn+1AVn+1

(27)

where AV, 1AV, .1* is the variance of V, ;. Since the vari-
ance is a non-negative quantity (27) can be written as an
inequality V1V ai1* > Vi1 Vari®, and if we divide by V5 Vi*
we have on the left-hand side of this inequality the expected
power attenuation factor of the wavebeam over a distance
of n lens sections and on the right-hand side the absolute
square of the expected amplitude attenuation factor over the
same distance, which according to (26) is equal to (gg*)»:

Vn+ 1Vn+ 1*

28
vy (28)

2 (g
Since this inequality holds for any number of lenses #, the
absolute square eigenvalues determine a lower bound for the
expected power attenuation factor per iteration and cor-
respondingly an upper bound for the expected power loss of
the statistically reiterative wavebeams.
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DiscUSsSION OF THE KERNEL OF THE STATISTICAL
MobE EQUATION

The kernel (19) is s product of two kernels, the first one
depending only on £, {1, « the other one depending only on
125 M1, B. Apart from this difference the two kernels are identi-
cal:

T(E2, £15m2, M5 o, B) = M (s, £1; ) M (02, 115 B). (29)

Hence, if the kernel M(%;, £, o) has the eigenfunctions
Gn(¢, o) and the eigenvalues M.(e) any product function

Fg m; a,B) = GulE; 0)Guln; B) (30)

is an eigenfunction of T" and the corresponding eigenvalue is
(e, B) = An(a)Mu(B). @31)

With this in mind, we shall discuss only the kernel M which
applies physically to the two-dimensional problem of a guide
with cylindrical lenses.

The kernel M is again a product of three terms. The first
term

1
2 1) = 113531 2
M(&, 1) Vo’ (32)

is the Fourier kernel of the perfectly aligned beam waveguide.
The second term

1 o \2
Males) = —exp[—fz(—) s] v = (=2 (33)
Y Y

is caused by the lateral displacement of the phase trans-
Sformation: if only the apertures were misaligned and not the
axis of the lenses, this term would reduce to unity. The third
term

1 o 1
Mt =5 fo(HT)

()

takes into account the lateral displacement of the apertures.
For perfectly aligned apertures, M; reduces to a step func-
tion of value 1 within the area of the apertures and of value
zero outside this area

fore =0

1 <
Myt 0) = {O :il: >Z
1

thus in effect limiting the range of integration in (18) to the
area of the apertures. For misaligned apertures (¢>0) the
discontinuous step from 1 to 0 is smoothed out into a con-
tinuous transition which becomes more gradual with in-
creasing ¢. Figure 4 shows the distribution of M; for ¢/a=1
percent, 2 percent, and 5 percent, assuming y = (1—2je?)? =1
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0§

}’i )

1
-1 0 -os 1 Iy 0 w0l 08 410 1 &
a

Fig. 4. The term M; in the kernel of integral equation (36) as a func-
tion of £/« for various values of the relative mean square displace-
ment o/«. For ¢—0, M; approaches a step function as indicated by
the dotted line.

The integral equation with the kernel M= M M,M;,

“+o0

Gu(E0) M (&, £1)dEy,

—c0

AnGm (E 2) =

— o < £H <A+ (36)

obviously satisfies the requirement that for o=0 it ap-
proaches the integral equation of the perfectly aligned beam
waveguide with the Fourier kernel (32). The eigenfunctions
and eigenvalues of this equation are angular and radial
prolate spheroidal wave functions, [11] respectively:

2
Gn(£) = Son <a2, —E), A = J™ /‘/_« aRom P (a?, 1)
a ™

fore =0. (37)

If ¢>0 it seems unlikely that the eigensolutions of (36) can
still be written as simple expressions in known functions.
Therefore, we restrict ourselves to solving this equation in
two special cases: in the first case we assume small mean
square displacements o and solve (36) by a perturbation
method. In the second case we assume infinitely extended
apertures; (36) can then be solved rigorously.

THE SLIGHTLY MISALIGNED BEAM WAVEGUIDE

In practice it will not present a major technological prob-
lem to align the lenses in an actual beam waveguide with a
tolerance that is small as compared to the radius of the aper-
tures. The case of slight misalignment, therefore, is primarily
of interest, from the point of view of applications.

Assuming ¢« and also ¢<<1 we simplify the kernel M of
integral equation (36). The term M, remains unchanged,
since according to (32) this term does not depend on o. The
term M,, (33), is in a second-order approximation:

Ma(&) = 1+ 0°(j — 2&°). (38)
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27 o~
Fig. 5. Approximation of the term M;(%:; «) in the kernel of integral

equation (36) by a trapezoidal function formed by the tangents to
M; in the points £ =0, *o, + .

In the term M;, (34), we approximate the argument of &,
ie., (ya+&/v)/v20 by a+i/+/20; M, o) then becomes
a real function.* We approximate this function by a trape-

zoidal distribution which, as shown in Fig. 5, replaces
My, o) by its tangents in the points £,=0, fa, !

1

TS

0

Myt a) =

With the approximations (38) and (39) integral equation
(36) becomes

ta
>\me(£2) = f 071'(2' tl)dgl

—a

1 —a 2 «
+— On($2, E0) (1 + 4/- >
2 —a—N (1/2)0 T
1 ta 2 «
-—f 0l £) (1 — 4/~
2 doV (5 /2o T

where 6(&,, £1) stands short for
M (s, £1) M 2(£0)Gn(£1)

~ \/L et 1+ o2 — 269)]Gu(t). (A1)

27
The range of the first integral on the right-hand side of (40)
has the width 2«, while the width of the ranges of the re-
maining four integrals is +/(r/2)c<X1. In these integrals,

¢ M; does not have a power series expansion in ¢ near c=0. In
simplifying M; we therefore have to take an approach different from
the second-order approximation we shall otherwise use in this section.
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we expand the function 8,(£:, &) into a power series of £
(at &=-+a or &= —a, respectively). The integrations can
then be performed leading to power series in o. Considering
terms up to the second order we obtain the approximate
integral equation

)\me(EZ) - \/ﬁ Gm(£1)675251d£1
o? +a
+ Vord . Gu(Er)eth(] — 287 dEy
\2r _ .
+ ot T ([ (@) + (o) Jeite
24
- [Gm,(_a)

JtEGn(—a) e} —a<&H< +a (42)
The first oterm on the right-hand side can be attributed to
the displacement of the phase transformation and the second
o2term to the displacement of the apertures.

T
0_<_‘£11 Sa—/‘/—;a
" e
o — —a < | < a — 0 39
4/2 <lal < +4/2 (39)
a+4/%a£l$1i <
——cx+\/(1r/2)o'
——f m(52,51)<1—4/# )dl
— & ot (r2)e
>ng+ f (s £2) <1+ )d& (40)
+a

Since ¢ is assumed to be small the eigenfunctions and
eigenvalues of (42) will not substantially deviate from the
corresponding quantities (37) for ¢=0; hence (42) can be
solved by a perturbation method. As this method follows a
standard procedure we shall omit the intermediate steps
and only state the result:

n(®) = sm<a, E)+«2zcmso,l<a, f)
o

p=0

M = Nom + 0%m  With

2
Nom =j"‘/‘/h— a RonV(a?, 1)
T

(43)
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where
Conp = Cmp.(l) + cmp(2)v Km = Km(l) + Km(2)
o 1 2 [t , £ 3
S BL GRS GO
Aog
i form + p:even and m £ p
CnpV = — — D [Som(a?, 1)Se (02, 1) + Soule?, DSon’(a?, 1)]
Om »
Now
CmpV = Cp® =0 form + u:odd andm = pu
knV = >\0m{ - ——f Som? ( >52d5}
‘IT
Km<2) = )\em EI:‘; S()m(a2, 1)30m/<a2, 1)
. AR ad £ ta 3
with Son’'( @?, — ) = —Som| % —}, Tw= Son? | a2, — ) dE (44)
a a¢ o —a o

Each coefficient ¢y, k- consists of two terms: the first term
pertains to the displacement of the phase transformation,
the second term to the displacement of the apertures. For
sufficiently large apertures («>2 .- -3) the functions
Somle?, /@), in particular those of small order m, decrease
to very small values at £=«. Hence, in this case the terms
@, Kk, become small as compared to the terms ¢,
k=", An estimate is obtained by approximating the func-
tions Sy, by their asymptotic Gauss-Hermite representa-
tions [3], [11]

Som (a‘“’, E) — const. Hen(n/2 £)e1ID%
&

(45)

for a — .

In the case of the coefficients « of the two lowest-order eigen-
values A, and A, the terms with superscripts (1) and (2)
become

Ko(l) 2
=7 =14 —=ac™
)\00 i3
form =0 _
koD T .
N = — — e *
" (@>2---3)
Kl(l) . 3 + 4 3
=7 —= e “
Mot T
form =1

@ 9
1 = — _}_/lr. a(a2 — 1)6—04
Nov 3

(46)

Since the eigenvalues determine the expected attenuation
of the statistical mode functions it can be stated that the
effect of misalignment on the attenuation is caused essen-

tially by the displacement of the phase transformation, while
the displacement of the apertures amounts only to a correc-
tion of the former effect.

The absolute square eigenvalues Agh¢* and AA,* have been
calculated with (43) and (46) for +=0.01, 0.02, and 0.05.
In Fig. 6, the quantities 1—No\o* and 1—A\* (which are
upper bounds of the expected power loss per iteration for the
lowest-order symmetric and antisymmetric statistical mode
functions, respectively) have been plotted as functions of a.
For small a-values the curves follow closely the diffraction
loss curves of the perfectly aligned waveguide as indicated
by the dotted lines. With increasing « the diffraction loss
decreases rapidly and the curves approach a limiting value
determined by the mean square displacement o of the lenses.

THE MISALIGNED BEAM WAVEGUIDE WITH INFINITELY
EXTENDED APERTURES

We now consider a beam waveguide with infinitely ex-
tended lenses, in other words, we assume that the phase
transformation (1) is performed over the entire planes of
phase correction. In this case we do not require o to be a
small quantity.

A wavebeam transmifted in this type of idealized wave-
guide will not suffer any loss of energy. However, due to the
misalignment of the lenses the energy distribution over the
beam cross section will spread out as the wavebeam is
passed from lens to lens. Hence, a receiver, matched to a
certain field distribution, will only recover part of the energy
launched by the transmitter and an amplitude and power
attenuation will be measured.

For a— o the terms M; and M, in the kernel of integral
equation (36) remain unchanged, while

—wo <H <+ o ({7)

M3(61; Dane — 1,
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Hence (36) reads guide with infinitely extended lenses can, therefore, be de-
scribed by the statistical mode functions in the same way as
1 e the actual distribution of a wavebeam transmitted in a
An(n(E2) = oy Gnl£1) perfectly aligned beam waveguide is described by the beam
- modes.
. a\? The eigenvalues of (48) are
-exp [.75251 -2 ‘> &2 |d&
0% 1 o \2) iz
-1
— 0 <H< 4w, (48) _ e 4 Y
Y
The eigenfunctions of this equation are—as in the case _
. . . m=20,12---. (52
o=0—Gauss-Hermite functions, but their arguments are
complex [12] The absolute square eigenvalues
1 16 41/2 _ 2 _2 2 1 1 16 4y1/2t1/2 + 4 4 |m+1/2
a k= (L F 165 V2L (L + 16091 al (53)
(1 + 4:0.4) m+1
1 o\’ have been calculated for m=0 - - - 4. They are plotted in
—_ — 2 _. — 2
Gn(®) = Hen(ug) exp [ {4 v <,Y> }E ] Fig. 7 as functions of ¢. Since for any ¢ the eigenvalue A,

m=0,1,2...

_ o\ A4 T
Withu=\/2|:1—|—4<—>:| , 0_<_argu§z
Y

v = (1 — 256912 (49)
These functions form in the range — © <f< -« an orthog-
onal system with the weight function exp[ — 2(¢/v)%£2]

—0

For o<1 the parameter u can be approximated
u =~ v2(1 + oY),

Hence, even in a fourth-order approximation the argument
of the Hermite polynomials becomes real. If this approxima-
tion is used the eigenfunctions G,(£)be come real function
apart from a common factor exp[(s/v)%?]; in orthogonality
relation (50) this factor is compensated by the weight func-
tion. As a consequence this relation allows expansion of a
given cross-sectional field distribution into a series of the
approximated mode functions according to the principle
of minimum mean square deviation. Since the Hermite poly-
nomials of real argument form a complete system for the
range — o <(<+ o the mean square deviation tends to
zero and the series of Gauss-Hermite functions actually
represents the field.

The expected cross-sectional distribution of an arbitrary
wavebeam transmitted in a slightly misaligned beam wave-

o< 1. (51)

6.6, e | -2 <7>s] =1

is the one with the largest absolute value, the statistical mode
function with the parameter m=0 suffers the smallest (ex-
pected) attenuation and can therefore be called the dominant
mode function. The value (52) for Ay has been confirmed by
an entirely different method: we consider the misaligned
guide of Fig. 3 and assume that the transmitter excites the
dominant beam mode of the perfectly aligned guide.® The
lens displacements do not change the Gaussian distribution
of the mode as it travels along the guide, but cause the mode

(V21 m!
_ foru=m
(50)

0 for u = m.

axis to follow a zig-zag path which is determined by the
laws of geometrical optics [4]. Assuming that the receiver
is matched to the centered beam, the expected receiver out-
put voltage V.41 can be calculated from the statistical varia-
tions of the zig-zag paths. It can be shown that, as the num-
ber n of the lenses increases, the voltage ratio V,.1/V,
(which determines the expected amplitude attenuation per
lens section) approaches the eigenvalue \, as given by (52).
The actual calculations will not be presented here since they
are rather tedious and involved.

Note that (52), for the eigenvalues in a waveguide with
infinitely large lenses, is in agreement with (46) for the
eigenvalues in a slightly misaligned waveguide. If, in (52) we
consider only terms up to the second order in ¢ and in (46)
have « approach infinity, we obtain in both cases

A =gl — @m+ 1 = fe?]. (54)

5 The lenses in Fig. 3 in this case are assumed extended.
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Fig. 6. The absolute squares of the expected attenuation factors N
and \; of the lowest-order symmetric and antisymmetric statistical
mode functions in a slightly misaligned beam waveguide (¢<<1).
Since Aho* and MM * are very close to 1, the difference of these
values to 1 has been plotted in a logarithmic scale.

ACKNOWLEDGMENT

The author thanks Dr. G. Goubau for many helpful
discussions on the subject of this paper.

REFERENCES

[1] G. Goubau and R. Christian, “A new waveguide for millimeter
waves,” Proc. Army Science Conf., U. S. Military Academy,
West Point, N. Y., vol. 1, pp. 291-303, June 1959.

[2] G. Goubau and F. Schwering, “On the guided propagation of
electromagnetic wave beams,” IEEE Trans. on Antennas and
Propagation, vol. AP-9, pp. 248-256, May 1961.

[3] F. Schwering, ‘“‘Reiterative wavebeams of rectangular symmetry,”
Arch. Elekt. Ubertragung, vol. 15, pp. 555-564, December 1961.

[4] G. Goubau and R. Christian, “Some aspects of beam wave-
guides for long distance transmission at optical frequencies,”
IEEE Trans. on Microwave Theory and Technigues, vol. MTT-12,

215
Q= O
10
04 m=0
>‘m>‘m*
T 06~ m=l
041 m=2
=3
021 m=4
0 1 1 1 i n
] 02 03 04 05 06
—_—

Fig. 7. The absolute squares of the expected attenuation factors of
the lower-order statistical mode functions in a misaligned beam
waveguide with infinitely extended apertures (a— ).

pp. 212-220, March 1964.

[51 F. Hirano and Y. Fukatsu, “Stability of a light beam in a beam
waveguide,” Proc. IEEE, vol. 52, pp. 1284-1292, November 1964.

[6] D. Marcuse, “Statistical treatment of light-ray propagation in
beam wave guides,” Bell Sys. Tech. J., vol. 44, pp. 2065-2081,
November 1965.

[7]1 D. W. Berreman, “Growth of oscillations of a ray about the
irregularly wavey axis of a lens light guide,” Bell Sys. Tech. J.,
vol. 44, pp. 21172133, November 1965.

[8] W. H. Steier, “The statistical effects of random variations on the
performance of a beam waveguide,” Bell Sys. Tech. J., vol. 45,
pp. 451-471, March 1966.

[9]1 C. Eaglesfield, “Mode conversion loss in a sequential confocal
lens system,” Proc. IEE (London), vol. 111, pp. 610-615, March
1964,

[10] D. Gloge, “Ein allgemeines verfahren zur berechnung optischer
resonatoren und periodischer linsensysteme,” Arch. Elekt. Uber-
tragung, vol. 19, pp. 13-26, January 1965.

[11] G. D. Boyd and J. P. Gordon, “Confocal multimode resonator
for millimeter through optical wavelength masers,” Bell Sys. Tech.
J., vol. 40, pp. 489-508, March 1961.

[12] F. Oberhettinger, Tabellen Zur Fourier Transformation. Berlin:
Springer, 1957, p. 45.




