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On the Theory of Randomly Misaligned

Beam Waveguides

FELIX K. SCHWERING, MEMBER, IEEE

Abstract—A straightforward method for the determination of the

expected attenuation in misaligned beam waveguides is presented. It

applies to confocal goides and assumes that the misalignment consists of

random displacements of the lenses in directions perpendicular to the beam

axis.

Reiterative fields, as they are present in perfeetly aligned beam wave-

guides, do not exist in misaligned guides. However, it can be shown that

there are beams whose expected field distribution is repeated from lens to

leus. These “statistical modes” are determined by the eigenfunctions of a

homogeneous integral equation of the seeond kind. The corresponding

eigenvalues determine the expected attenuation per iteration. The abso-

lute squares of the eigenvalues yield an upper bound for the expected

power 10ss per iteration. .

The integral equation is solved for small mean square displacements

of the lenses by a perturbation method. For iniiitely extended lenses, the

equation can be solved in closed form. In both cases the expected attenu-

ation of the lower-order statistical modes has been calculated; the results

are shown as functinn of the mean square displacement of the lenses.

INTRODUCTION

T

HE MODE THEORY of beam waveguides [1]-[3]

is derived with the assumption that the guiding struc-

ture is strictly periodic. Apart from other conditions,

this requires that the phase transforming lenses be per-

fectly aligned on the waveguide axis. A transmitted field can

then be described by a system of reiterative wavebeams

(so-called beam modes) whose cross-sectional field distribu-

tion is repeated with the spacing of the lenses. With every

iteration, the beam modes are multiplied by a complex am-

plitude factor determining the attenuation and phase shift per

iteration. The purpose of this paper is to establish the effects

of random misalignments of the lenses on the field distribu-

tion and the attenuation. The study is limited to so-called

confocal guides where the spacing of the lenses is twice their

focal length. Furthermore, the assumption is made that the

lenses are displaced only in a direction perpendicular to the

waveguide axis. Displacements in the direction of the wave-

guide axis and tilting of the lenses leads to smaller-order

effects and will, therefore, not be considered here.1 The lateral

displacement of each lens is assumed to have a Gaussian

Manuscript received August 29, 1966; revised November 28, 1966.
The author is with the Institute for Exploratory Research, U. S.

Army Electronics Command, Fort Monmouth, N. J.
1According to Steier [8] the effects of random lens displacements in

the axial direetion are coupled to those of the lateral lens displacements
and, if the number of lenses of the guide is extremely large, the coupled
effects can greatly influence the transmission properties of the beam
wavegnide. In practical cases, however, as, for example, in the case of
a confocal guide with less than 1(Y lenses and with a relative standard
displacement of the lenses in the axial direction &= Ad/d= 10-’, the
axial lens displacements will intluence a transmitted wave beam only
Mlgniticantly.

probability distribution, with a standard displacement which

is the same for all the lenses.

We will show that in this type of misaligned guiding

structure modes exist that are reiterative in the statistical

sense; this means the cross-sectional distribution of the ex-

pected fields is repeated from lens to lens. Similar to the

case of perfect alignment, the statistical modes are deter-

mined by the eigenfunctions of a homogeneous integral equa-

tion of the second kind. The eigenvalues of this integral

equation determine the expected attenuation between two

successive lenses.

Misaligned beam waveguides have been treated in the

literature from two points of view. A number of papers [4]-

[8] deal with the path of the beam axis and the variation of

the beam diameter in a misaligned beam waveguide, but do

not include the effect of misalignment on attenuation and

transmission loss. Eaglesfield [9] was the first to investigate

the expected loss of the dominant mode in a misaligned

waveguide. He expands any transmitted wavebeam into the

mode functions of the corresponding aligned guide with

infinite apertures; the misalignment of the lenses then leads

to an interaction between the different mode functions so

that a wavebeam passing through a misaligned guide is

described by a spectrum of modes which in general changes

from lens section to lens section. Eaglesfield assumes that,

after the wavebeam has passed a large number of lenses, a

quadratic steady state will be reached, i.e., a steady state

characterized by an expected power spectrum of the modes

that does not change any longer apart from a factor common

to all modes that determines the expected power loss per

iteration. This expected power loss has been calculated

approximately for the dominant mode, assuming small mean

square displacements of the lenses. Gloge [10] has studied

wavebeam resonators with tilted mirrors, and from his anal-

ysis derives the field distribution and attenuation in system-
atically misaligned beam waveguides, such as periodically

misaligned or continuously curved waveguides. He also

treats randomly misaligned waveguides. The approximation

used in this case, however, considers only the loss caused by

a conversion of a mode, incident on a displaced lens, into a

mode spectrum, but neglects the partial reconversion of this

spectrum into the initial mode by the following displaced

lenses.

The integral equation derived in this paper formulates

(within the framework of the Fresnel-Kirchhoff theory) the

misalignment problem rigorously, and yields the field dis-

tribution of the expected mode functions and the expected

amplitude attenuation per iteration, though not the expected

power loss. In the limiting case of infinitely extended lenses



SCHWERING: MISALIGNED BEAM WAVEGUIDES 207

the integral equation can be solved in closed form: the eigen-

functions are Gauss-Hermite functions, whose (in general

complex) arguments depend on the mean square displace-

ment of the lenses and whose eigenvalues are algebraic func-

tions of this quantity.

STATEMENT AND MATHEMATICAL FORMULATION

OF THE PROBLEM

Consider a beam waveguide of equally spaced identical

lenses whose focal length is half the lens spacing (see Fig. 1).

The axis of the waveguide coincides with the z-axis of a

cartesian coordinate system x, y, z. The apertures of the

lenses are assumed to be rectangular in shape with the

dimensions 2a and 2b in the x- and y-directions. The lens

centers are displaced from their proper position on the wave-

guide axis in a direction perpendicular to this axis. The x-

and y-components of the displacements are denoted by s.

and t,, respectively. The phase transformation of the vth

lens is then given by

exp
{

–.WO +; [(* – s“)’ + (!/ – t,)’]
}

(1)

where lo is the phase retardation in the lens axis and k the

wavenumber. The transformation takes place within the

range —a+s,<x< +a+s,, —b+ t.<y< +b+ t, outside this

range the field is assumed to be absorbed by an opaque

screen. We assume that the displacements s., t,have a Gaus-

sian probability distribution

~-1/2(6./a2 ~1/2(t./a2
w(SJ =

d% ‘
‘w(t,) = —

427rs
(2)

where the mean square displacements is the same for every

v and for both cross-sectional directions. The sequence of

(u-2) (v-1) tv) (V+l)

)

x
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Fig. 1. A section of a misaligned beam
waveguide with rectangular lenses.

lenses forming the guide is then a structure periodic in the

statistical sense.

If the distribution of the tangential electric or magnetic

field components of a time harmonic wavebeam is known in

the plane of the first lens z= Z1 the field in any plane z> ZI

can be determined. Assuming at first deterministic dis-

placements s,, t,the field in the plane z= constant will de-

pend on the displacements of the lenses through which the

beam has passed before reaching this plane. Since the dis-

placements are at random, one can define an “expected

beam” which is determined by the average of all the possible

field distributions.

If any given beam has passed a large number of randomly

misaligned lenses, it is reasonable to assume that the expected

beam becomes independent of the number of preceding

lenses. If this is the case, the expected beam before and after

each iteration should be the same, apart from a decrease in

amplitude that may be characterized by an “expected” atten-

uation factor.

We denote the x- ory-component of any one of the possible

field distributions in front of the vth lens by E(x,, y., z,).

This distribution depends, of course, on the displacements

of the preceding lenses. The field E’ behind the lens is then

II(z,, y,, .2.) exp
{

–Wo + ~ : [(L’ – s.)’ + (?A – L)’]
~’(%?4”,a) = ~

} inside

{

—a+sv<x<+a+s,
(3)

outside –b+t. sy<+b+ t””

From this distribution the field in front of the (v+ I)st lens

is derived with the help of Green’s function for the plane

screen. Using the well-known Fresnel-Kirchhoff approxima-

tion of this function we obtain

E(ZP+I, Y,+I,Z.+l) = ~+ $ e-i” f ‘“+’”J’‘b+’’JY(Xy, w, 27)q?
{

k

}
‘j ~ [(xP+I – G) 2 + (y,M – y.) 2] dy,dx,

-U+.9, –b+-iv

Inserting (3) into (4) yields the following relation between

the fields at the input planes of two successive lenses

‘(XY+I,UY+I, .%+1)= $ ~ e-~(’d+to) S+”+’”s

+b+tv

JWG,v,, a)
-~+8v -’i-t,

{

ii k

}

. exp j — [(x. — s.)’ + (y, — L)z] — j — [(X.+1 — x.)’ + (Vr+l — y,)’] dvpdz-
d 2d

(5)
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Iterating (5) one can express the field

by the field at the first lens

IEEE TRANSACTIONS ON MICROWAVE THEORY ANQ TECHNIQUES, APRIL 1967

at the (n+ l)th lens

{

~n

}{

.kn
.exp j — ~ [(z, — .s,)2 + (y, — L)z] exp —j — ~ [(X,+1 — $,)2 + (y,+l — y,)z]

d ,=, 2d ,=1 }

The field at the input plane of the (n+ l)th lens depends on

the displacements of all the lenses up to the nth lens. The

expected field at the (n+ l)th lens is given by

Wh+l, yn+l, %+1)= J+”-” J+” E(%z+l,?/.+1,%+,)w(sl)w(h) “ “ “ W(Sn)W(t&itIdSI . . 0 dt.dsn
—. —m

where the w’s are the probability distribution functions, (2).

We now ask the question, is there an incident beam whose

expected field distribution at lens n+ 1 is (apart from an

amplitude factor p) the same as the actual distribution at

lens 1, or in mathematical formulation, can the equation

be satisfied? With (6) and (7), (8) leads to a homogeneous

integral equation of the second kind for the initial field dis-

tribution E(-x, y, ZJ at the input plane of the first lensj

with

“~:‘($.+l) ‘v; ~Y+I, t/Y;% Wwh - c

k
K(z,+l, z,; g,+,, y,; s., t,) = j’ — e–i(~~+*O) . ~xp

4x2j2d

. dyndxmdtldsl . . . dtndsm

{
j ~ [(xP – SJ2 + (Y, – t,)’]

k 1 5,2 + t“z
– ~ ~ [(G+l – Z)z + (Y,+l – &)2] – ~

}F “

We interchange the order of integration in that we form pairs

of integrals over s,, x, and over t,,y..We then introduce the

transformation

and an analogous

+03

H
+a+8v +.

Ss
+.+.,

. . .dxvds, = - . . ds,dxv
8v.- xv—-a+ ~ XV=-m Sv=—a+z v

transformation for the integration over

Y,, t,. This transformation is evident from Fig. 2 where the
range of integration is shown in an x,, s,-plane.

Thus the integral equation (9) can be written

Z_mh+l, Yn+l,~1)= J+” . .. f+” ~(~1, Yl, 21)
z.,U.=—m ~l!vli=—m

“ ~ ~(~”+1, z,; v.+1, Y.; S) . dy,dz, . . . dy.dxm

~On the left-hand side of (9) x and y have been replaced by Xn+l
and yn+l as the x- and y-coordinates which remain after performing the
integrations on the right-hand side have these subscripts.

(7)

(8)

(9)

(lo)

(11)

(12)
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Fig. 2. Geometrical illustration of (11):
range of integration in the x,, s,-plane.

where

7?(2,+1, x,; ~,+1,y“; 3)

= J:::.”I::’.u
K(z,+l, z,; ~,+1,y,; s,, tu)dtuds,.

The kernel of integral equation (12)

s
‘m ~ ~ J-+m QF(x.+lj$v;vy+lYp;~l

~r, .V,, =—m X2 ,gg=—ca

.dy,dx, . - . dyndz.

(13)

(14)

is the (n — 1) times iterated kernel K. To solve this equation,

therefore, we need only to find the system of eigensolutions

of the simpler equation with the noniterated kerne13

viJ7(z2, ‘Y2,a)
+. +.

—

‘s s E(xI,VI,4~(z2, $I; L/2, VI; Wwh

—cc —m

— m<z2, y25+m. (15)

This means physically, if the expected field distribution of a

wavebeam at the (n+ l)th lens is equal to the initial field

distribution at the first lens, then also the expected field dis-

tributions at the second lens, at the third lens etc., are equal

to the initial distribution and the wavebeam is reiterative

in the statistical sense with the spacing of the lenses. Wave-

beams of this property, therefore, will be called the modes

of the randomly misaligned waveguide. The expected dis-

tribution of these statistical mode functions at the lens planes
is determined obviously by the eigenfunctions of the kernel

1? and the expected attenuation factors per iteration are de-

termined by the corresponding eigenvalues. Introducing nor-

malized variables

~The eigenvalue p= O which would not permit this statement will
not occur for physical reasons.

u, T ‘ d(s, t

and substituting

209

(16)

(17)

integral equation (15) becomes

(#’(t?, m)
+. +.

=J J F(&,, 77,)57($2, h; 772, m)ddh

—. —m

—
~<&b7?2<+~. (18)

The kernel T is obtained with (10), (13), and (17)

T(52, ‘h; v2t m)

where @is the error integral

u = #(k/d)s is the normalized mean square displacement

of the lenses. Since the kernel T is not Hermitian, we do not

have a mathematical theorem to prove the existence of eigen-

solutions of (18). To be able to proceed we shall assume,

however, in the following that this equation has indeed solu-

tions. In particular, if the mean square displacement is small,

the eigenfunctions will not deviate essentially from the char-
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acteristic functions for u= O, i.e., from the mode functions

of the perfectly aligned guide which even form a complete

system.

THE ORTHOGONALITY RELATION OF THE STATISTICAL

MODE FUNCTIONS

The eigenfunctions of (18) which, in general, are complex

satisfy the orthogonality relation

+m +m

Ss
Ffi(& ?J1’m(.$, ?Jw(.g, ?Jciqdg

—03 -m

{

Am
. : ; : (21)

o

F, and Fm are any two eigenfunctions; if they are properly

normalized the constant An is unity.

In contrast to the mode functions for the aligned guide the

orthogonality relation for the statistical mode functions

requires a weight function

“{“(’;:?)-”(-2:”)}
- {WY)-“(-’277)}-’22)

The orthogonality relation (21) follows from the fact that

with the substitution

P(g,q) = J’(& n“ov(.% d (23)

(18) transforms into an integral equation with the symmetric

kernel

But the eigenfunctions of a symmetric kernel are orthogonal

to one another with the weight function 1.

EXPECTED ATTENUATION AND EXPECTED POWER Loss

OF THE STATISTICAL MODE FUNCTIONS

Consider the transmission system shown in Fig. 3. A

transmitter excites in the input plane of the first lens the
initial field distribution of a statistically reiterative wave-

beam. The wavebeam is then passed through a sequence of

n (misaligned) lenses, and is received by a calibrated receiver,

placed at a distance d behind the nth lens [i.e., at the input

plane of the (n+ l)th lens]. The voltage V.+l, measured by

the receiver, is compared to the reference voltage VI which

is measured by the same receiver when placed immediately

at the input plane of the first lens.
The expected value of the voltage ratio V.+l/ VI obviously

is the expected amplitude attenuation factor of the wave-

beam over the path length of the sequence of n lenses and

(1) (2) (3) (n-l) (n)

Fig. 3. Misaligned beam waveguide with transmitter and receiver.

the expected value of the absolute square voltage ratio

Vn+l. Vn+l*/ VIV1* is the expected power attenuation factor

over the same path length.

The voltage measured by the receiver is

v=
H

U(t, dw, d&”u
s

(25)

where U(& q) is the distribution of any given incident field in

the aperture plane S of the receiver and ~(f, q) is a charac-

teristic function of the receiver. Since we consider a statisti-

cal beam mode, whose actual field distribution in the input

plane of the first lens is given by an eigenfunction of integral

equation (18), Ul(&, q)= F(& q), and whose expected field

distribution in the input plane of the (n+ l)th lens is given

by the same function, ~n+l(& q)= q“F(.g, q), where q is the

corresponding eigenvalue, we obtain with (25):

The expected voltage ratio ~.+l/ Vl, therefore, is equal to q“

and the eigenvalue q is the expected amplitude attenuation

factor per iteration.

According to a well-known theorem of probability theory,

the expected value of the absolute square voltage Vn+l. V.+l*

can be written

Vn+lvn+l x = ~n+l ~n+l* + Av.+ lAvn+ 1* (27)

where AVn+lA Vn+l* is the variance of Vn+l. Since the vari-

ance is a non-negative quantity (27) can be written as an

inequality Vn+IV,+l* > 7n+17n+I*, and if we divide by J-’l. VI*

we have on the left-hand side of this inequality the expected

power attenuation factor of the wavebeam over a distance

of n lens sections and on the right-hand side the absolute
square of the expected amplitude attenuation factor over the

same distance, which according to (26) is equal to (qq*~:

vn+lvn+l*
2 CM*)”.

V,VI*
(28)

Since this inequality holds for any number of lenses n, the

absolute square eigenvalues determine a lower bound for the

expected power attenuation factor per iteration and cor-

respondingly an upper bound for the expected power loss of

the statistically reiterative wavebeams.
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DISCUSSION OF THE KERNEL OF THE STATISTICAL

MODE EQUATION

The kernel (19) is s product of two kernels, the first one

depending only on & .$I, a the other one depending only on

m, m,& Apart from this difference the two kernels are klenti-

cal:

~(i2, h; 7?2,~l; ~) ~) = ~(i2, h; 4~(7?2, ~l; 8). (W

Hence, if the kernel M(& &l, a) has the eigenfunctions

G~(& a) and the eigenvalues L(a) any product function

F($, q; a, /?) = Gm(f; cJG.4~; (3 (30)

is an eigenfunction of T and the corresponding eigenvalue is

d% 8) = MOW(P). (31)

With this in mind, we shall discuss only the kernel M which

applies physically to the two-dimensional problem of a guide

with cylindrical lenses.

The kernel M is again a product of three terms. The first

term

(32)

is the Fourier kernel of the perfectly aligned beam waveguide,

The second term

.[ (7)1M2(&) = ‘exp –2 y 2 &12 , v = (1 – 2j02)l/2 (33)

is caused by the lateral displacement of the phase trans-

formation: if only the apertures were misaligned and not the

axis of the lenses, this term would reduce to unity. The third

term

takes into account the lateral displacement of the apertures.

For perfectly aligned apertures, MS reduces to a step func-

tion of value 1 within the area of the apertures and of value

zero outside this area

{

1 Ihl<a
M3(&; a) = fora=O

o I.$l{>a

thus in effect limiting the range of integration in (18) to the
area of the apertures. For misaligned apertures (u> O) the

discontinuous step from 1 to O is smoothed out into a con-

tinuous transition which becomes more gradual with in-

creasing u. Figure 4 shows the distribution of M3 for u/a= 1

percent, 2 percent, and 5 percent, assuming 7 = (1 – 2ju2)l/2 = 1

1,0 \

( E.

I

-a5

1 II { 1

-11 -10 -09 !01 o . 0,[ +09 +10 +11 i
a

Fig. 4. The term M3 in the kernel of integral equation (36) as a func-
tion of &/a for various values of the relative mean square displace-
ment u/a. For u+, M~ approaches a step function as indicated by
the dotted line.

The integral equation with the kernel M= MlM,MS,

P +@

x~G~(~J = I GrJh)3Lf(t2, h)@l,
d _m

obviously satisfies the requirement that for a= O it ap-

proaches the integral equation of the perfectly aligned beam

waveguide with the Fourier kernel (32). The eigenfunctions

and eigenvalues of this equation are angular and radial

prolate spheroidal wave functions, [11] respectively:

() T
Gm(r&)= Sama2, s , dL = p — Ciz?ofi(l)(cd,1)

a n-

for a = O. (37)

If u> O it seems unlikely that the eigensolutions of (36) can

still be written as simple expressions in known functions.

Therefore, we restrict ourselves to solving this equation in

two special cases: in the first case we assume small mean

square displacements a and solve (36) by a perturbation

method. In the second case we assume infinitely extended

apertures; (36) can then be solved rigorously.

THE SLIGHTLY MISALIGNED BEAM WAVEGUIDE

In practice it will not present a major technological prob-

lem to align the lenses in an actual beam waveguide with a

tolerance that is small as compared to the radius of the aper-

tures. The case of slight misalignment, therefore, is primarily

of interest, from the point of view of applications.

Assuming .<<a and also IS<<l we simplify the kernel M of
integral equation (36). The term Ml remains unchanged,

since according to (32) this term does not depend on cr. The

term MZ, (33), is in a second-order approximation:

Mz(g,) = 1 + Uqj – 2&). (38)
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Fig. s. Approximation of the term it4,(&; m)in the kernel of integral
equation (36) by a trapezoidal function formed by the tangents to
Ma in the points & =0, ta, ~ m.

In the term MS, (34), we approximate the argument of @,

i.e., (w+ g/7)/ti~u by a+ &/~%; lkft(&, a) then becomes

a real functional We approximate this function by a trape-

zoidal distribution which, as shown in Fig. 5, replaces

kf~(~, a) by its tangents in the points &= O, + a, f ~ :

p

10

we expand the function %(gz, h) into a power series of &

(at g,= +a or g,= –a, respectively). The integrations can

then be performed leading to power series in a. Considering

terms up to the second order we obtain the approximate

integral equation

- [Gmf(-a)

The first u’-term on the right-hand side can be attributed to

the displacement of the phase transformation and the second

a2-term to the displacement of the apertures.

With the approximations (38) and (39) integral equation

(36) becomes

hmGm(.Q=f ‘“e,,.(i , h)dt]
—L7

where 0(<2, ~1) stands short for

flf,(g,, &) Mz(&JGm(&)

The range of the first integral on the right-hand side of (40)

has the width 2a, while the width of the ranges of the re-

maining four integrals is ti(7r/2)u<<l. In these integrals,

4 M8 does not have a power series expansion in c near u = O. In
simplifying MS we therefore have to take an approach different from
the second-order approximation we shall otherwise use in this section.

Since a is assumed to be small the eigenfunctions and
eigenvalues of (42) will not substantially deviate from the
corresponding quantities (37) for a= O; hence (42) can be

solved by a perturbation method. As this method follows a

standard procedure we shall omit the intermediate steps

and only state the result:

(43)
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where

c (1) + ~mp(z),mp = Cmp Km = Km(l) + Km(2)

(1) =%J +- :J:asom(a,+))so,(a,:),d, ]
l–—

Aofi I

t
for m + p: even and m # p

1
(~)=——cm~ ~om # [Som(cd, I)so.’(a’, 1) + So,(d, l)som’(a’, 1)]

1–— “
Aofi ;

Cmfi(1) = ~m~(z) = () form +p:oddandm=p

,m=f:o.(a2,:)’,.

213

(44)

Each coeficlent c~~, Kmconsists of two terms: the first term
pertains to the displacement of the phase transformation,

the second term to the displacement of the apertures. For

sufficiently large apertures (a> 2 . . . 3) the functions

&fi(a2, &/a), in particular those of small order m, decrease

to very small values at f= a. Hence, in this case the terms
~~PW, ~~rz) become small as compared to the terms C~~(l),

Km(l). An estimate is obtained by approximating the func-

tions tl~~ by their asymptotic Gauss-Hermite representa-

tions [3], [11]

In the case of the coefficients ~ of the two lowest-order eigen-

values XO and AI the terms with superscripts (1) and (2)

become

Ko(l)
—— j_l+lae–a’

Xoo 4T
form=O

KO(2) d;
— — ffe-”2

Xoo – 3
(a> 2..3)

Kl(l)

Aol
—=j–3+Aa3e–-’

4T
form=l

~l(?.) 24;
—= —— a(a2 — l)e–”z. (46)
Xol 3

Since the eigenvalues determine the expected attenuation

of the statistical mode functions it can be stated that the

effect of misalignment on the attenuation is caused essen-

tially by the displacement of the phase transformation, while

the displacement of the apertures amounts only to a correc-

tion of the former effect.

The absolute square eigenvalues )@w* and X,X1* have been

calculated with (43) and (46) for u= 0.01, 0.02, and 0.05.

In Fig. 6, the quantities 1– k&* and 1– X111* (which are

upper bounds of the expected power loss per iteration for the

lowest-order symmetric and antisymmetric statistical mode

functions, respectively) have been plotted as functions of a.

For small a-values the curves follow closely the diffraction

loss curves of the perfectly aligned waveguide as indicated

by the dotted lines. With increasing a the diffraction loss

decreases rapidly and the curves approach a limiting value

determined by the mean square displacement u of the lenses.

THE MISALIGNED BEAM WAVEGUIDE WITH INFINITELY

EXTENDED APERTURES

We now consider a beam waveguide with infinitely ex-

tended lenses, in other words, we assume that the phase

transformation (1) is performed over the entire planes of

phase correction. In this case we do not require a to be a

small quantity.

A wavebeam transmitted in this type of idealized wave-

guide will not suffer any loss of energy. However, due to the

misalignment of the lenses the energy distribution over the

beam cross section will spread out as the wavebeam is

passed from lens to lens. Hence, a receiver, matched to a

certain field distribution, will only recover part of the energy

launched by the transmitter and an amplitude and power

attenuation will be measured.

For a+ IXI the terms Ml and Mj in the kernel of integral

equation (36) remain unchanged, while

M3(’5; a)... + 1, – m <$1 s + ~. (47)
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Hence (36) reads guide with infinitely extended lenses can, therefore, be de-

scribed by the statistical mode functions in the same way as
+.

k.G.(&) = L s the actual distribution of a wavebeam transmitted in a
Grn(h)

421r y -. perfectly aligned beam waveguide is described by the beam

modes.

“exp[’’’’2(:Y’121d’1’1The eigenvalues of (48) are

r2~~ ,1,2- lzj’l Im+llz

The eigenfunctions of this equation are—as in the case

u= O-Gauss-Hermite functions, but their arguments are

complex [12] The absolute square eigenvalues

‘m(’)‘H’m(u’)ex(-{+’- (3’}’21
m =0,1,2..,

‘ithu=++4(3]”4‘<argu+
‘y = (1 — 2ja’) 1/2. (49)

These functions form in the range – ~ ~ ~~ + ~ an orthog-

onal system with the weight function exp [ – 2(a/Y)z~z ]

+ 4a4) m+l

have been calculated for m= O . .

m = 0,1, 2,.... (52)

(53)

. 4. They are plotted in

Fig. 7 as functions of a. Since for any u the eigenvalue AO

is the one with the largest absolute value, the statistical mode

function with the parameter m= O suffers the smallest (ex-

pected) attenuation and can therefore be called the dominant

mode function. The value (52) for AOhas been confirmed by

an entirely different method: we consider the misaligned

guide of Fig. 3 and assume that the transmitter excites the

dominant beam mode of the perfectly aligned guides The

lens displacements do not change the Gaussian distribution

of the mode as it travels along the guide, but cause the mode

S+.
G~(g)G.(f) exp

[()
–2 :28 Id&=j u

—cc -1

\o for P #m.

(50)

For r<< 1 the parameter u can be approximated

‘u = @(l + U4), u << 1. (51)

Hence, even in a fourth-order approximation the argument

of the Hermite polynomials becomes real. If this approxima-

tion is used the eigenfunctions G~(~)be come real function

apart from a common factor exp [(u/7)’&’ ]; in orthogonality

relation (50) this factor is compensated by the weight func-

tion. As a consequence this relation allows expansion of a

given cross-sectional field distribution into a series of the

approximated mode functions according to the principle

of minimum mean square deviation. Since the Hermite poly-

nomials of real argument form a complete system for the

range — m <&<+ m the mean square deviation tends to

zero and the series of Gauss-Hermite functions actually

represents the field.

The expected cross-sectional distribution of an arbitrary

wavebeam transmitted in a slightly misaligned beam wave-

axis to follow a zig-zag path which is determined by the

laws of geometrical optics [4]. Assuming that the receiver

is matched to the centered beam, the expected receiver out-

put voltage ~.+l can be calculated from the statistical varia-

tions of the zig-zag paths. It can be shown that, as the num-

ber n of the lenses increases, the voltage ratio V.+J7.

(which determines the expected amplitude attenuation per

lens section) approaches the eigenvalue XOas given by (52).

The actual calculations will not be presented here since they

are rather tedious and involved.

Note that (52), for the eigenvalues in a waveguide with

infinitely large lenses, is in agreement with (46) for the

eigenvalues in a slightly misaligned waveguide. If, in (52) we

consider only terms up to the second order in u and in (46)

have a approach infinity, we obtain in both cases

Xw = j~[l – (2m + 1 – j)uz]. (54)

6 The lenses in Fig. 3 in this case are assumed extended.
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Fig. 6. The absolute squares of the expected attenuation factors XO
and Xl of the lowest-order symmetric and antisymmetric statistical
mode functions in a slightly misaligned beam waveguide (u<<l ).
Since xoAo* and AIXI* are very close to 1, the difference of these
values to 1 has been plotted in a logarithmic scale.

ACKNOWLEDGMENT

The author thanks Dr. G. Goubau for many helpful

discussions on the subject of this paper.

REFERENCES

[1] G. Goubau and R. Christian, “A new waveguide for millimeter
waves,” Proc. Army Science Con$, U. S. Military Academy,
West Point, N. Y., vol. 1, pp. 291-303, June 1959.

[2] G. Goubau and F. Schwering, “On the guided propagation of
electromagnetic wave beams,” IEEE Trans. on Antennas and
Propagation, vol. AP-9, pp. 248-256, May 1961.

[3] F. Schwering, .~’Reiterative wavebeams of rectangular symmetry,”
Arch. Elekt. Ubertragzmg, vol. 15, pp. 555-564, December 1961.

[4] G. Goubau and R. Christian, “Some aspects of beam wave-
guides for long distance transmission at optical frequencies,”
IEEE Trans. on Microwave Theory and Techniques, vol. MTT-12,

215

u-m

—u

Fig. 7. The absolute squares of the expected attenuation factors of
the lower-order statistical mode functions in a misaligned beam
waveguide with infinitely extended apertures (~+ m).

pp. 212-220, March 1964.
[5] F. Hirano and Y. Fukatsu, “Stability of a light beam in a beam

waveguide;’ Proc. IEEE, vol. 52, pp. 1284-1292, November 1964.
[6] D. Marcuse, “Statistical treatment of light-ray propagation in

beam wave guides,” Bell Sys. Tech. J., vol. 44, pp. 2065-2081,
November 1965.

[7] D. W. Berreman, “Growth of oscillations of a ray about the
irregularly wavey axis of a lens light guide,” Bell Sys. Tech. J.,
vol. 44, pp. 2117–21 33, November 1965.

[8] W. H. Steier, “The statistical effects of random variations on the
performance of a beam waveguide,” Bell Sys. Tech. J., vol. 45,
pp. 451-471, March 1966.

[9] C. Eaglesfield, “Mode conversion loss in a sequential confocal
lens system,” Proc. IEE (London), vol. 111, pp. 610-615, March
1964.

[10] D. Gloge, “Ein allgemeines verfahren zur berechnung opti~$her
resonatoren und periodischer linsensysteme,” Arch. Elekt. Uber-
trugung, vol. 19, pp. 13–26, January 1965.

[11 ] G. D. Boyd and J. P. Gordon, “Confocal multimode resonator
for millimeter through optical wavelength masers,” Bell Sys. Tech.
J., vol. 40, pp. 489-508, March 1961.

[12] F. Oberhettinger, Tabellen Zar Fourier Transformation. Berlin:
Springer, 1957, p. 45.


